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TRANSONIC RAREFACTION FLOW IN THE NEIGHBORHOOD OF A CONVEX CORNER* 

V.N. DIESPEROV 

A new solution of the problem of perfect gas flow over a corner is consideredinthe 
case when a sonic line issues from the corner point, and a mixed flow is formed. It 
satisfies the Fal'kovich-K&m&n equation, belongs to its class of self-similarsolu- 
tions /l/, and obtains when the self-similarity parameter n= 2. 

The obtained solution corresponds to the flow represented 
from the supersonic part of the stream reach the corner point. 

Fig.1 Fig.2 

in Fig.1 in which perturbations 
The respective influence region 
is bounded by the limit chara- 
cteristic C,-.Discontinuities 
of second derivatives of vector 
velocity components propagate 
along the limit characteristic 

CO+ to the region of flow. Se- 
yond the limit characteristic 
C,+ the flow becomes a Prandt; 
-Meyer flow. Acceleration at 
the corner point is finite, and 
the sonic line is concave to- 
ward the oncoming stream. The 
flow constructed for n= 2 sub- 
stantially differs form the 
Vaglio-Laurin flowwhich obtains 
for a=#/,, and was investigat- 
ed in detail in /Z-_/and ,also, 

from the Vaglio-Laurin type which are defined by self-similar solutions of the Fal'kovich- 
K&man equations for flow over corner points with subsonic generatrices of nonzero curvature 
/7/. 

Transonic flow past convex walls defined, respectively, by the equations y = 0 and y=cz 
(c<O) fort<0 and z>O and the effect on the pattern of flow reaching the cornerpointalonq 
the limit characteristic C,- of discontinuity of first derivatives of the velocity vector 

components. 

1. We consider the flow over the corner point 0 defined by the intersection of two smooth 
curves A0 and OD (Figs.l,Z). 

We introduce the orthogonal system of coordinates (2,~) whose negative r-semiaxis coincid- 
es with A0 and the positive, denoted in Fig.2 by ON, coincides with the tangent to A0 at 
point 0. The quantity y is measured along the external normal to AON. We define the curv- 
ature of the generatrix 40 by the formula 

v(r)=-- 3 + H(n)(--z)2-3;"[1 -+x(z)], 1< 0 (1.1) 

wherex(t)=a(i)asr+ O.This condition is equivalent to that in the Cartesian System Of Coor- 
dinates (X,y) in which the X axis lies on the tangent to A0 at point 0, the equation Of 
qeneratrix A0 in the neighborhood of point 0 is of the f0r.m 

y=- a(- X)4--3.'" -1 (1.2) 

-. 
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Curvature (1.1) of the generatrix A0 is O(1) when n> '1%. If B (n) + 0 then when n e 

(f,"ip), the quantity ]v(z) I-+ m as r-+ 0. For certain values of a the coefficient B(n) 

vanishes. These values of fL are for v (5)E 0 , and correspond to flow over a corner. We de- 
note by U, and vy projections of the velocity vector on axes z and Y, respectively; and by 

e the speed of sound. As the characteristic values of all flow parameters we take their 

critical values. The thermodynamic variables are linked by the equation of state of perfect 
gas. In what follows all equations that define the flow are assumed to be dimensionless.They 
are of the form 

aavq - qo + =o, q= (&,UJ (1.3) 

*a__& '4r 71% - pa(U,a + $*)I, 
Y--l 

p'% =- v+l ' 
Vxq=O 

The metric is defined by formulas 

dP=(l -uy)*dx* +dya, a(x) = 
xgo 
x>o 

We denote by G the neighborhood of point 0 where lay I<l, and introducetheperturbation 
velocity ur= 1 f U, vv = ~(1 u /<I, 1 v 1 St). Xt is now possible to simplify system (1.3) in 
region G, and represent it in the first approximation in the form 

(1.4) 

Carrying out the substitution 

v=v- o(z)& s 
D 

and introducing the potential q of velocities (u, v), we obtain the Fal'kovich-K&m~n equation 

As in /2,5-77/, we seek a solution of Eg.(l.s) in region G 
functions that satisfy the following conditions: 

a) when Y-+O,Z<O, the velocity component JJ~-+ 0, which 

(1.5) 

in the class of self-similar 

is equivalent to 

$=V-~o(5)dreU(n)(-xrr-*~n f... 
d 

b) when y+O,s>OI the flow becomes a Prandtl-Meyer flow. 
When R =6/6, the problem has a solution which defines the flow over a convex comer, 

since E(%)= o; it was first obtained by Vaglio-Laurin /2/. 
the acceleration at the comer point is infinite. 

In the Vaglio-Laurin flow (Fig.2) 

the flow do not reach it. 
Perturbations from the supersonic part of 

From the sonic line which is convex toward the oncoming streamthey 
propagate downstream along the characteristic. The effect of the subsonic generatrix A0 can 
be taken into account using the following approximations to the Vaglio-Laurin solution. When 
B(n)=+0 and 1 <n<2, we also have solutions that define the flow over a corner point with 
generatrix A0 of nonzero curvature whose effect is taken into account in the first approxi- 
mation. We shall call them solutions of the Vaglio-Laurin type, 
the same as those of the Vaglio-Laurin. 

since their properties are 
The case of n=% was considered in /7/. 

In what follows the main efforts are related to the investigation of the problem for ti= 
2, which is a limit case in the sense that when n > 2 the Vaglio-Laurin type flow is not real- 
ized. A solution defining the flow over a comer when n ==2 is constructed below. 

For arbitrary n the solvability of the problem with conditions a) and b) is conveniently 
investigated by the hodograph method. We denote by rl the absolute value of velocitydeviation 
from sonic and by 9 the angle of the velocity vector inclination in the system of coordinates 
(X,y). The stream function 9 satisfies in the hodograph plane (n,e) the Tricomi equation. We 
seek for it a solution of the form 
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The corner point with a Prandtl-Meyer flow in its neighborhood but not rn the hodograpf, 
plane is mapped onto the r,--characteristic 13 = -(2+~)/3. The solution which vanishes on that 
characteristic is of the form 

A solution of the Vaglio-Laurin type is an analytic continuation of solution (1.6) into 
the neighborhood of axis 8 = 0, n (0 through axis rl=O, H((j. When a = "!, stream function J; 
vanishes when 0 ~0. In the case of n =1/Z the derivation of solution is similar. However, 
if n=2 is assumed, the analytic continuation of function (1.6) does not yield the solution 
$ = 0. 

2. To obtain a clearer picture of this situation and derive a solution of the problemwith 
conditions a) and b) when n = 2, we turn to the Fal'kovich-K&m&n equation (1.5). Its self- 
similar solutions and the equations which define the latter are of the form /8,9/ (v is the 
specific heat ratio) 

When n-2, for functions ! and g we have 

(4:'-f)+(-$)1-2&+$ 2j=o, g +- ;4M i- (f-4&1 
., 1 

(2.1) 

(2.21 

Passing to phase variables /l,lO/ 

we reduce the first of Eqs.(2.2) to the ordinary first order differential equation /lO/ 

dY - W- IOY++F'+i'YFfY' 
dF= (4 - F)T 

(2.3) 

The relation between variables (i, E) and(F.Y')is defined by formulas 

(2.4) 

Let us consider the behavior of integral curves of Eq.(2.3) in the phase plane (F,Y) (Fig. 
3) and establish their relation with the solutions of Eqs.(2.2). 

Equation (2.3) has four singular points A (O,O),B(O,i),C(4, -(;).D (4* -12) in ,z:+ht f&t; 
part of the plane (F,Y) and three singular points E,G,Q which lie at infinity. 
node and in the physical plane corresponds to the t axis. The behavior of integral curves in 

its neighborhood is defined by 

(2.5) 

Point Bis a saddle through which pass two integral curves. One of these represents the 

linear function '4 = 2 - 2F and in the point B neighborhood defines the Prandtl-Meyer flow. 
Point C is a dicritical node and corresponds to the limit characteristic C,' issuing from the 
corner point, and pointD is a saddle that corresponds to the limit characteristic C,- which 
enters the corner point. 

The singular point G is a saddle which can be reached only along the integral curve 'f': 
-3F/2 which also passes through point A and, as implied by (2.5), is one of the axes of node 
.d . In the physical plane point G corresponds to the y axis on which sonic velocity is reach- 

ed. The singular pointF is an analytic node in whose neighborhood the behavior of integral 
curves can be represented in the form 

i=(:E~_2t-1-2+zIa+...r F=f, Y=_t? t-0 



One of the axes of node 
as indicated earlier, passes 
to the Y axis. Point Q is a 
F=4. At transition through 
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E is represented by the integral straight line Y=2 - 2F which, 
through the saddle 8. In the physical plane point E corresponds 
node which is reached by moving along the limit line 1 ‘Y I--+ 00, 
point Q the quantity E reaches its extremm, which means that the 

plane is covered twice. At the approach 
to point Qthe stream acceleration in- 
finitely increases, Besides the indicat- 
ed integrals Y = -3Ff2,Y = 2 - 2F, there 
is one more integral of Eq.(2.3) obtained 
in the explicit form 

Y== -(I -+- 2Fk u'i + 24 (2.6) 

The integral curve (2.6) issues from 
point A and, having passed through points 
D, .,?J, C, returns to point A. It defines 
the analytic flow in a Lava1 nozzle /3, 
LO/. The line along which the velocity 
v, = 0 is denoted by Y. 

As 1 E $-+ co the asymptotic behavior 
of solutions of Eq.(2.1) in the x axis 
neighborhood is defined by 

Q, = A0 (f ~)S-!J/n .+ (3n - “$” - I) AoP (&- E)+“” + - (2.7) 

where A,, and B, are aribtrary constants related to constant CA in formula (2.5) by the formula 

The case of 8,= &A, #a@', ~0) corresponds in the physical plane ta the flow over a 
corner with a rectilinear generatrix, 
I= 0 in (1.21, 

since when B, = 0, the quantities v(s) =@ in (1.1) and 
and Y,+~,u~ = 0. The integral curve (2.5) that corresponds to this case will 

be called symmetric and denoted by X,. In the case of B,"3t:O, A, 1-2 0 (CA = 00) the integral 
curve (2.5) will be called antisymmetric and denoted by K,. The latter corresponds to flow 
past a wall (1.2) at sonic velocity at the boundary. The integral curve that passes through 
point B and corresponds to the Prandtl- Meyer flow will be denoted by K,. 

In the case of subsonic velocities on AO(F<O) one of the integral curves (2.5) reaches 
point G, and then, when F(0,al.f remaining integral curves which lie between the latter and 
curve K* reach point E. One of them, in turn, reaches point B, unavoidably intersecting axis 
F =&which corresponds to passing through the speed of sound. In the physical plane to such 
motion corresponds the following path: moving from the negative semiaxis z we pass axis 
then the sonic line EBB> 0 and, finally, obtain the Prandtl-Meyer flow. Whenn=3/, X,is kkh 
curve /2,3/, which corresponds to flow ovex a corner with rectilinear generatrix. when D.zE~/~ 
the airectrix of the corner has a constant curvature , and point B is reached by one of curves 
(2,5) with CA E(@,w). When a===2 the integral curve K, is transformed into curve (Z,ii), and 
curve Yv= 2 - 2F become curve K, which reaches pointE when Cr= ~0, and to the integral curve 
fT, corresponds curve Y= -3Fi2 which, as previously indicated, reaches point C. Thismeans 
that when n= 2, it is impossible to reach point4 by continuous motion from point R on the 
upper part of curve K,(Y >O). 

When nt: 2 all integral curves, except curve K,, are represented in the phaseplane(F,Y) 
using the integrals 

Integrals (2.8) were used in f8,lOf for investigating flows in Lava1 nozzles with b>O. 
Note that functions F and U' are invariant with respect to the sign of 5. In the neigh- 

borhood of point A solution (2.81 is the same as the expansion of d@/@ obtained by setting 
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Consider the neighborhood of point A. The integral curves lying above curve K, are A- 
fined by integrals (2.8) with the minus sign. For those of them that are incl\&+ i :: :hn 
region between K,(F > O,V'<O) and K? (F< 0, ‘i’> 0), (region 1) II (0, /I< C) as ; ,* a:;::, 
n; 0. it/=_0 as k_> $_X. The integral curves lyinq below curve K, are dcflned by inteqr;il 
(2.8) with the plus sign. In the region between K, (F :, O,Y<O) andK,(F 1' (), '!'<(J) (reqion. 
2) we have a (0, b< 0 as 5 -'.. - ~fi and a > 0. h >Y 0 as ;-. %, Curves (i, and K, are obtaineci 
from (2.8) for b == (I and (I -- 0, respectively. Curve K, is obtained by the direct integratlcn 
Of 

In region F< 0 it is possible to reach point G that corresponds to the 4 axis from point 
A only by moving along K,. The y axis is in that case the sonic line and, thus, alsc a 
characteristic. In the physical plane the flow defined by the integrals ,f = -- V'bE. R I(h;')i- 
2Et/mi3, E<O, b<O corresponds to curve Kg (F< 0). To extend this solution continuously 
to region E >0 is impossible, even when, after having reached point G along curve K?, one 
moves on it in the reverse direction to point A when F< 0. Function g becomes discontinuous 
on axis y. The jump from point G to point I? implies discontinuityof velocities i',.~'~. When 
the sonic line is defined by the equation E -= E,, > 0 (i.e. it is convex toward the oncoming 
stream), perturbations reach each of its points moving along characteristics (‘&and, then, car- 
ried away along C- characteristics. When n -2, these characteristics merge with the sonic‘ 
line, and the flow becomes blocked. It is thus impossible to obtain a flow free of singulari- 
ties (of the Vaglio-Laurin type) over a corner point with the qeneratrix A0 (1.21, when ?I L? 

and R(n)fO. 

3. When '1'<- FfF‘<O), the integral curves issuing from point iI reach either point 0 or 

C, and only one curve (of integral (2.6)) reaches point u. It was shown in ;'lO/ that rn- 
tegral is the unique symmetric solution K, which analytically passes the limit characteristic 

co-. The integral curve (2.6) then passes through point E and reaches point c which in the 
physical plane issuing from the corner point corresponds to the limit charactexiscic co+ _ 
Various solutions with discontinuities of derivatives can be joined along it. Integral i2.6! 
and the limit characteristics cO- and G, ' in terms of variables (f. f) are of the form 

2 
/-::ot-i -+, a; 0: EI,.Y _.._A- E, =A_ 4'- 2 

Consider the integral curves issuing from point c'with F < 4, denoting by k the tangent of 
the inclination angle of these at G. Part of them reach point A, one reaches point fir and 
the remaining converge at Q. For the integral curves in region 1 we have R! :--'Ec = n, kF=(-'. 
-5: 

) '0' AS implied by (2.4) and (2.8), constants b,,n,,&,k are linked by the relations 

b,i-=(O,-a)*(al f- ?a), k=-+- $f;) 

When ~,=a , the quantities k:- -5j:3, b, -0 and the integral curve coincides with h',. Fix- 
ing, h, and a we obtain from equalities (3.1) their homologous terms a, and k. Themagnitude 

of discontinuity of the second derivative d?jdE2 is determined by the value of k in (2.4). All 

integral curves issuing from point G and lying in region 1 intersect line v and, changing the 

sign of vertical velocity /component/ 1:" to negative, reach point A. This case corresponds 

to a flow past a convex wall 

y 7 0, r <> 0 (3.2) 

Y -._ I.'r I/i;l (hz)',:] : 15. J ". 0 

For k --2 equalities (3.1) loose their meaning. This is due to that integral (2.9) does 

not belong to the set of integrals (2.8). The transition from point c to point /I means oas- 

sing tothe Prandtl-Meyer flow which in the physical plane corresponds to flow over a corn+r. 

The constant C in integral (2.9) obtained usinq formulas (2.4) is SEC', The flow over a cor.vex 

corner may be considered as the limit case of flow over a convex parabolic wall y = 0. r:;o, 

and y - - v'&X"*, I .> 0 as b, -+ w. 

For an arbitrary n>i the integral k '3 in the neighborhood of point H Cd11 be represented 

in the form 
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j = E?[Z .L Cp!(“+I) + . , .l, E -+ OQ _ (3.3) 

where constant C is negative when Y>O and positive when Y<O. This means that the veJ.oc- 

ity /component/ u, of the flow over a convex corner with generatrix do(1.2)and n~(1.2) of the 
vaglio-Laurin type is always lower than the longitudinal velocity /component/ in the flow over 
a corner with n = 2. As a consequence, the pressure and density in the first case are higher 

than in the second. Hence the solution of the problem of flow over a convex corner in corner 
C is, when n=2, of the form 

We fix the constant b, and consider the subsonic flow past a convex wall. The dependence 

of a, on a is determined using the cubic equation (3.1) wit,l 1. the condition that a,> a. We have 

a,=2acos(+), CoS6=1-- 
2dJ 

0<9/2 '2' --$<k<--3, a>(b1/2)“# 

al=2ac&- 3 , cose=&-f 

o<e< 2112, -1/z < k < - ‘it, (t~d4)~~ .< a < (bd2)“* 

al=2achB 3' che=*-l 

0 < 6 < W, - 714 <k <- 2, 0 < a <(b,$)'!* 

The second derivatives of functions f and g are discontinuous on the limit characteristic 
c,'. On approaching it from the left they are equal zero , and behind it they are determined 

by formulas 

Formulas (3.4) imply that the second derivatives have their maximum jump in the flow over 
a corner at crossing the characteristic C,+ . As kc- 0, the jump of the second derivative of 
function g approaches zero. When Ec vanishes, the oncoming stream velocity becomes sonic and 
the third derivative of E suffers a discontinuity. It will be seen from (2.9) that h= 5' when 
SC= O,,which means that then the sonic stream merges along the characteristic with the Prandtl 
-Meyer flow. If we pass now from the derived solution (u,u) to the function of the potential, 
the local solution q(z,y) of the Fal'kovich- Khrmin equation (1.5) will belong to Cl(C) and 
satisfy conditions a) and b). The selection of solution is determined by the over-all problem. 

4. Let us now assume that along the characteristic c,,- &J = -a/4, and that singularities 
in the form of discontinuities of first derivatives of velocity components, reach -the corner 
point. This problem was considered in detail in /lo/ in relation to the Lava1 nozzles. In 
this case the integral curve fc, having reached point D passes with a jump to point C in the 
phase plane. The further flow pattern depends on the inclination of the integral curve k, is- 
suing from point C. At some values of kD shock-free flows are realized, at others,only flows 
with shock waves obtained. The jump of the second derivative of function f on characteristic 
Co- is 1Gf/d~*l~+,, = -6 (k, +VJ. 

If kDE f-m, -Z), then 

f = a$ + $- lili4afi _t$E, a >O, B > 0, 5 E [ED, fcl (4.1) 
zr,+3 

a=+-, l/m=-24(kn++)[-- 
','z 

Sth-n+2) I 
The integral curves (4.1) issue from point C, reach point E (the Y axis) and return to 

point C, which corresponds to reaching the C,* characteristic. Further, the integral curve 
issuing from C reaches along K, point 3. On characteristic C,,+ the second derivative becom- 
es discontinuous with the jump 

[-g& ==6@c+2)>0, .%E(--Vs,--2) (4.21 
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When k,, = -2 the motion takes place from point C along curve K, to point [ , WC!; !.<icic 
from point E to point C along K,, and then to point R. The vertical vel0cit.y iconpor:en7.' "b 
on axis y changes its sign from the negative to positive. The constan'; (' in !:!.7 ;s fqual 

3&P, and the jump of the second derivative on characteristic C,' vanishes. 
When kDE (-2, -*/J, motion takes place along integral curves (4.1), but 

Along the characteristic co' 
z < 0. p < II. 

second derivatives become discontinuous with shock ;4.2i, but 
kcE(---oo, -2). The case of kD = -5/s is a limit one. Motion takes place along tk.( integral 
curve K, to point D, which corresponds to reaching the characteristic C,'. Now, to reach 
point A it is necessary to pass with a jump to point C . Thus, when k, -: --“/J the singularity 
is reflected from the corner point in theformof discontinuity of first derivatlvcs. ae con- 
stant C in (2.9) and the quantities kc, a, and kD are related by formulas 

The relations between constants a and C for which a shock-less transition from point A to 
point B is effected are of the form 

If now kn > -5!3, the integral curves issuing from point C lie between K, and K:. After 
passing through point E all of them reach point Q. This means that the derivative dfldz be- 
comes Infinite for some g greater than zero. However, a motion of gas with infinite accelera- 
tion is not realizable. Either a shock wave is generated in it, or the whole flow disintegrat- 

:;A, 
Thestateof gas in the phase plane ahead and behind the shock wave are relatedby formulas 

F, + F, = 8, Y, + Yy, = -36, 1 < F,< 4 

Using these and integral (2.9) we obtain the relation between the quantities F, and y, 

Y, = -2F,- 22, 4< F,<7 

We denote the obtained set by K+, and the slope of the integral curve issuing from point 
C and passing through point F = 7 by \y = -_36,-&,+. Now, when kDE(-b/s,kD*), it is possible 
to construct the flow over an obtuse comer, by introducing in the flow the shockwave 5 = & > 
0. The variation range of constants C and a are determined by the inequality 0< C/d< Jl.,. 

An example of flow over a corner with discontinuities of velocity component derivatives 
along the characteristic issuing from the comer point was given in /ll/, where a vortex flow 
in the neighborhood of the comer was considered in the case of It - 'I,. We point out in con- 
cluding that when n = 2,3, II, asymptotic types of flow in Lava1 nozzles are realized /lo/. 
Hence it is possible to construct solutions that define the flow over an obtuse comer when 

n = 3,11, as in the case of n = 2. 

1. 
2. 

3. 

4. 

5. 

The author thanks O.S. Ryzhov and V.A. Rykov for discussing this work. 
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